
Supplementary Material
Bridging the Gap: Unifying the Training and

Evaluation of Neural Network Binary Classifiers

1 Theoretical Grounding

This section provides the proofs mentioned in Section 4 of the main paper.

1.1 Lipschitz Continuity of Metrics Based on Soft-Set Confusion Matrix Values

Theorem 4.1. The linear Heaviside function approximation Hl is Lipschitz continuous with Lipschitz
constant M = max{m1,m2,m3}.

Proof. Recall that Hl is piecewise linear, consisting of three line segments of slopes:

m1 =
δ

τ − τm
2

m2 =
1− 2δ

τm
m3 =

δ

1− τ − τm
2

where τm = min{τ, 1− τ}.

Consider any fixed τ . Hl is continuous, because each piecewise linear component is continuous, and
we can computationally verify that Hl(p, τ) is defined to be continuous at the two points p = τ ± τm

2 .
Let M = max{m1,m2,m3}. Then, we show that the slope of any secant line must be nonnegative
and bounded by M .

For simplicity, let f(p) = Hl(p, τ). Consider any two points 0 ≤ p1, p2 ≤ 1, and assume without
loss of generality that p1 ≤ p2. If p1, p2 ≤ τ − τm

2 , then |f(p2) − f(p1)| = m1|p2 − p1|. If
τ − τm

2 ≤ p1, p2 ≤ τ + τm
2 , then |f(p2)− f(p1)| = m2|p2 − p1|. Furthermore, if τ + τm

2 ≤ p1, p2,
then |f(p2)− f(p1)| = m3|p2 − p1|. In all three of these cases, |f(p2)− f(p1)| ≤ M |p2 − p1|.
Otherwise, if p1 and p2 do not both lie within the bounds of same singular line segment, then there
are three more cases. If p1 ≤ τ − τm

2 ≤ p2 ≤ τ + τm
2 , then since p1 ≤ p2 and f is nondecreasing:

|f(p2)− f(p1)| =
∣∣∣f(p2)− f

(
τ − τm

2

)∣∣∣+ ∣∣∣f (τ − τm
2

)
− f(p1)

∣∣∣
= m2

∣∣∣p2 − (τ − τm
2

)∣∣∣+m1

∣∣∣(τ − τm
2

)
− p1

∣∣∣
≤ M |p2 − p1|

Similarly, if τ − τm
2 ≤ p1 ≤ τ + τm

2 ≤ p2, then:

|f(p2)− f(p1)| =
∣∣∣f(p2)− f

(
τ +

τm
2

)∣∣∣+ ∣∣∣f (τ +
τm
2

)
− f(p1)

∣∣∣
= m3

∣∣∣p2 − (τ +
τm
2

)∣∣∣+m2

∣∣∣(τ +
τm
2

)
− p1

∣∣∣
≤ M |p2 − p1|

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Finally, if p1 ≤ τ − τm
2 and p2 ≥ τ + τm

2 , then:

|f(p2)− f(p1)| =
∣∣∣f(p2)− f

(
τ +

τm
2

)∣∣∣+ ∣∣∣f (τ +
τm
2

)
− f

(
τ − τm

2

)∣∣∣+ ∣∣∣f (τ − τm
2

)
− f(p1)

∣∣∣
= m3

∣∣∣p2 − (τ +
τm
2

)∣∣∣+m2

∣∣∣(τ +
τm
2

)
−
(
τ − τm

2

)∣∣∣+m1

∣∣∣(τ − τm
2

)
− p1

∣∣∣
≤ M |p2 − p1|

This exhausts all cases, and so for all p1, p2, we have |Hl(p2, τ)−Hl(p1, τ)| = |f(p2)− f(p1)| ≤
M |p2 − p1|. Thus, Hl is Lipschitz continuous with Lipschitz constant M .

Theorem 4.2. Every entry of the soft-sets confusion matrix based on the Heaviside approximations
are Lipschitz continuous in the output of a neural network.

Proof. Without loss of generality, we prove that the |TPs| entry is Lipschitz continuous in the input
vector p = (p1, . . . , pn) corresponding to outputs of the neural network given inputs x = (x1, . . . , xn)
and labels y = (y1, . . . , yn). The Lipschitz continuity of all the other entries (|FNs|, |FPs|, and
|TNs|) follows similarly by symmetry. For any sample tuple (pi, yi, τ), recall that:

tps(pi, yi, τ) =

{
Hl(pi, τ) yi = 1

0 otherwise

where the final value |TPs| is calculated from the summation |TPs| =
∑n

i=1 tps(pi, yi, τ) over
all sample tuples (pi, yi, τ). Since tps(pi, yi, τ) evaluates to 0 if yi ̸= 1, this sum is equivalent to
|TPs| =

∑
yi=1 Hl(pi, τ).

By Theorem 4.1, we know that Hl(pi, τ) is Lipschitz continuous in pi over the domain pi ∈ [0, 1].
Any function that takes as input a vector is Lipschitz continuous if it is Lipschitz continuous in each
entry of its input. It follows that |TPs| =

∑
yi=1 Hl(pi, τ) is Lipschitz continuous in the input vector

p.

By a similar reasoning, it follows that the other entries |FNs|, |FPs|, and |TNs| are all also Lipschitz
continuous in the input vector p.

1.2 Approximation of Confusion-Matrix Based Metrics with Soft Sets

Following the ideas in Section 4.2 of the main paper, we generalize the proof for F1-Score and show
that, under similar assumptions, convergence holds for certain other objective functions. Specifically,
our proof holds for all continuous objective functions that can be expressed solely in terms of the
ratios of entries of the confusion matrix to n, the size of the dataset. Most metrics, including Accuracy,
Arithmetic Mean, Fβ-Score, Jaccard, and Geometric Mean all satisfy this property. Our generalized
proof assumes a fixed threshold value τ , but we also show that convergence holds for AUROC, which
is computed over a range of threshold values.

As before, consider a dataset of size n with {x1, ..., xn} examples and {y1, ..., yn} labels. Suppose a
network outputs a probability pi that the label yi = 1. Since the specific outputs pi are unknown and
may change across iterations, we again assume that pi is a random variable. When computing the
entries of our confusion matrix, pi is passed through the Heaviside function H , which generates an
output ŷHi = H(pi, τ), where ŷHi ∈ {0, 1}. Then |TP | =

∑
yi=1 ŷ

H
i and |FP | =

∑
yi=0 ŷ

H
i . On

the other hand, under our proposed approximation, pi is passed through the Heaviside approximation
H, which generates an output ŷHi = H(pi, τ). In this case, ŷHi can take on any real value between 0
and 1. Then |TPs| =

∑
yi=1 ŷ

H
i and |FPs| =

∑
yi=0 ŷ

H
i are entries of the soft set confusion matrix.

1.2.1 Continuous Generalization and Accuracy

Consider a network trained on a dataset with rn positive and (1 − r)n negative elements, where
r ∈ [0, 1] is some constant. Let a loss function ℓ be continuous in the ratio of each entry of the
confusion matrix to n, the size of the dataset. Hence, ℓ can be written as a function of |TP |

n , |FP |
n ,

|TN |
n , and |FN |

n . But since |TP | + |FN | = nr and |FP | + |TN | = (1 − r)n, |FN |
n = r − |TP |

n

2

and |TN |
n = (1− r)− |FP |

n . Thus, |FN |
n and |TN |

n can be represented in terms of |TP |
n and |FP |

n , so

ℓ
(

|TP |
n , |FP |

n

)
can be expressed as a continuous function on just |TP |

n and |FP |
n .

Thus, the loss computed using the Heaviside step function can be expressed as:

ℓ = ℓ

(
1

n

∑
yi=1

ŷH
i ,

1

n

∑
yi=0

ŷH
i

)
(1)

The loss when computed from soft sets is then:

ℓs = ℓ

(
1

n

∑
yi=1

ŷH
i ,

1

n

∑
yi=0

ŷH
i

)
(2)

As in Section 4.2 of the main paper, suppose a classifier correctly classifies any positive example
as a true positive with probability u and any negative example as a false positive with probability
v. Also, assume that all classifications are independent. Because the loss function ℓ is calculated
with discrete ŷHi , we assume that the classifier will classify examples as a random variable ŷHi ∼
Bernoulli(uyi + v(1− yi)). Thus, ŷHi ∼ Bernoulli(u) if yi = 1, and ŷHi ∼ Bernoulli(v) if yi = 0.

Since ℓs can take on continuous values in [0, 1], we consider that ŷHi is a random variable drawn
from a Beta distribution, which has support [0, 1]. In particular, assume ŷHi ∼ Beta(αuyi + αv(1−
yi), βuyi + βv(1 − yi)). Hence, ŷHi ∼ Beta(αu, βu) if yi = 1, and ŷHi ∼ Beta(αv, βv) if yi = 0.
Let αu

αu+βu
= u and αv

αv+βv
= v, so for any i, E

[
ŷHi

]
= u if yi = 1, and E

[
ŷHi

]
= v if yi = 0.

Under the above assumptions, both ℓ and ℓs have the same average classification correctness: for
any given i, E

[
ŷHi

]
= E

[
ŷHi

]
. Also, there exists some αu, βu, αv, βv such that the distributions of

ŷHi = H(pi, τ) and ŷHi = H(pi, τ) can both hold simultaneously under the same network for all i.

If we let
∑

yi=1 ŷ
H
i = U ∼ Binomial(nr, u) and

∑
yi=0 ŷ

H
i = V ∼ Binomial(n(1− r), v) be the

independent random variables denoting the number of true positives and false positives in a sequence
of n independent predictions, then by the Strong Law of Large Numbers, 1

nrU
a.s.→u and 1

n(1−r)V
a.s.→ v

both converge with probability 1 as n → ∞. Hence, U
n

a.s.→ ru and V
n

a.s.→(1− r)v. We therefore have,
from the Continuous Mapping Theorem, that as n → ∞:

ℓ = ℓ

(
1

n

∑
yi=1

ŷH
i ,

1

n

∑
yi=0

ŷH
i

)
= ℓ

(
U

n
,
V

n

)
a.s.→ ℓ(ru, (1− r)v) (3)

For ℓs, let Us =
∑

yi=1 ŷ
H
i and V s =

∑
yi=0 ŷ

H
i be the independent random variables denoting the

total amount of true positives and false positives in the soft set case. Then, ℓs from Eq. (2) becomes:

ℓs = ℓ

(
1

n

∑
yi=1

ŷH
i ,

1

n

∑
yi=0

ŷH
i

)
= ℓ

(
Us

n
,
V s

n

)
(4)

But by the Strong Law of Large Numbers, 1
nrU

s a.s.→ αu

αu+βu
= u. Similarly, 1

n(1−r)V
s a.s.→ αv

αv+βv
= v

also converges with probability 1 as n → ∞. Thus, Us

n

a.s.→ ru and V s

n

a.s.→(1− r)v. By the Continuous
Mapping Theorem:

ℓs = ℓ

(
Us

n
,
V s

n

)
a.s.→ ℓ(ru, (1− r)v) (5)

Thus, ℓ and ℓs both converge almost surely to the same value as n → ∞. Since ℓ(ru, (1− r)v) is a
finite constant, E[ℓ],E[ℓs] → ℓ(ru, (1− r)v) by the Bounded Convergence Theorem. This means
that the ℓs value is an asymptotically unbiased estimator for the expected loss ℓ, and we expect
average loss values to converge to ℓs as n → ∞, under our setup.

Since Accuracy = |TP |+|TN |
n is a continuous function on |TP |

n and |TN |
n , it follows that Accuracy

computed from soft-sets, Accuracys, and Accuracy computed using the Heaviside step function both
converge almost surely to the same value under this setup as n → ∞. Similarly, E[Accuracys] and
E[Accuracy] both converge to the same expectation as n → ∞.

3

1.2.2 AUROC

Let the true positive rate, TPR(τ), and false positive rate, FPR(τ), be functions of the threshold
value τ . Then AUROC is defined as AUROC =

∫ 1

x=0
TPR(FPR−1(x)) dx. In our case of binary

classification, the choice of threshold value τ can range from 0 to 1.

Consider a network trained on a dataset with rn positive and (1 − r)n negative elements, where
r ∈ [0, 1] is some constant. Previously, we treated the probabilities u and v as constants since τ was
fixed. Now, assume that u = u(τ) and v = v(τ) are both parameterized by τ . Both u and v must be
nonincreasing in τ because increasing the threshold value will never increase the number of positives
classified. Furthermore, we must have u(0) = v(0) = 1 and u(1) = v(1) = 0 as the boundary
conditions. Since τ is no longer fixed, we also let ŷHi (τ) = H(pi, τ) and ŷHi (τ) = H(pi, τ) both be
parameterized by τ and be nonincreasing in τ .

In practice, since binary classification has discrete true positive and false positive rates, we ap-
proximate/calculate AUROC by choosing threshold values 0 = τ0 < τ1 < . . . < τk = 1 where
τi = i

k for all 0 ≤ i ≤ k and then using the trapezoidal rule to approximate the area under the
ROC curve with the intervals defined by the points 1 = FPR(τ0) ≥ . . . ≥ FPR(τk) = 0. Since the
true positive rate and false positive rate are both monotone in τ with TPR(0) = FPR(0) = 1 and
TPR(1) = FPR(1) = 0, the length of the intervals all approach 0, and so this approximation using
the trapezoidal rule converges to the AUROC value as k → ∞.

Consider some fixed value k and let 0 = τ0 < τ1 < . . . < τk = 1 where τi =
i
k . Then under this

approximation with the trapezoidal rule, we have that the AUROC is:

AUROC =
1

2

k∑
i=1

(FPR(τi−1)− FPR(τi))(TPR(τi) + TPR(τi−1)) (6)

For true AUROC, note that as before that for any given τ , TPR(τ) = 1
nr

∑
yi=1 ŷ

H
i (τ). Because

this is calculated with discrete ŷHi , we assume that the classifier will classify examples as a random
variable ŷHi (τ) ∼ Bernoulli(u(τ) · yi + v(τ) · (1 − yi)). Thus, ŷHi (τ) ∼ Bernoulli(u(τ)) if
yi = 1 and ŷHi (τ) ∼ Bernoulli(v(τ)) if yi = 0. Hence, for any τ , TPR(τ) = 1

nr

∑
yi=1 ŷ

H
i (τ) ∼

1
nr Binomial(nr, u(τ)) is its marginal distribution. Similarly FPR(τ) = 1

n(1−r)

∑
yi=0 ŷ

H
i (τ) ∼

1
n(1−r) Binomial(n(1− r), v(τ)) for all τ .

However, both TPR(τ) and FPR(τ) must be nonincreasing functions in τ . To enforce monotonicity
so that TPR(τ0) ≥ TPR(τ1) ≥ · · · ≥ TPR(τk) and FPR(τ0) ≥ · · · ≥ FPR(τk), we construct
their joint distribution as follows. First, consider n uniformly distributed i.i.d. random variables
X1, . . . , Xn ∼ Uniform(0, 1). Then for all i and all 0 ≤ j ≤ k, we let:

ŷH
i (τj) =

{
1 Xi ≤ u(τj) · yi + v(τj) · (1− yi)

0 Xi > u(τj) · yi + v(τj) · (1− yi)
(7)

Indeed, under this construction, the marginal distributions TPR(τj) ∼ 1
nr Binomial(nr, u(τj))

and FPR(τj) ∼ 1
n(1−r) Binomial(n(1 − r), v(τj)) both hold. We now, however, also have that

TPR(τ0) ≥ · · · ≥ TPR(τk) and FPR(τ0) ≥ · · · ≥ FPR(τk).

Since each marginal distribution TPR(τi) ∼ 1
nr Binomial(nr, u(τi)), by the Law of Large Numbers,

for all 0 ≤ i ≤ k, TPR(τi)
a.s.→u(τi). Similarly, FPR(τi)

a.s.→ v(τi). Thus, by the Continuous Mapping
Theorem, the true AUROC is:

AUROC =
1

2

k∑
i=1

(FPR(τi−1)− FPR(τi))(TPR(τi) + TPR(τi−1))

a.s.→ 1

2

k∑
i=1

(v(τi−1)− v(τi)) · (u(τi) + u(τi−1))

(8)

Now, consider AUROC computed from soft sets (which we denote as AUROCs). AUROCs can
take on continuous values in [0, 1], so we consider that ŷHi is a random variable drawn from a Beta

4

distribution, which has support [0, 1]. In particular, for any τ , assume ŷHi (τ) ∼ Beta(αu(τ) · yi +
αv(τ) · (1 − yi), βu(τ) · yi + βv(τ) · (1 − yi)). Hence, ŷHi ∼ Beta(αu(τ), βu(τ)) if yi = 1, and
ŷHi ∼ Beta(αv(τ), βv(τ)) if yi = 0. Let αu(τ)

αu(τ)+βu(τ)
= u(τ) and αv(τ)

αv(τ)+βv(τ)
= v(τ), so for any i,

E
[
ŷHi (τ)

]
= u(τ) if yi = 1, and E

[
ŷHi (τ)

]
= v(τ) if yi = 0.

Once again, we show that monotonicity can be enforced across the marginal distributions for corre-
sponding true positive and false positive rates computed from soft sets: TPRs(τ) = 1

nr

∑
yi=1 ŷ

H
i (τ)

and FPRs(τ) = 1
n(1−r)

∑
yi=0 ŷ

H
i (τ) among the threshold values τ0, . . . , τk. It is well known that

for any constants α, β, β′ > 0 with β > β′, the distribution Beta(α, β′) stochastically dominates
Beta(α, β): specifically that the cumulative distribution function of Beta(α, β) lies above the cumu-
lative distribution function of Beta(α, β′) at every point x ∈ (0, 1). Let αu(τ) = αu and αv(τ) = αv

be constant, with βu(τ) and βv(τ) nondecreasing in τ such that αu

αu+βu(τ)
= u(τ) and αv

αv+βv(τ)
=

v(τ). Then, for all i, the distribution Beta(αu · yi + αv · (1 − yi), βu(τ
′) · yi + βv(τ

′) · (1 − yi))
stochastially dominates Beta(αu · yi +αv · (1− yi), βu(τ) · yi + βv(τ) · (1− yi)) if τ > τ ′. We can
therefore construct a coupling among the distributions together by considering i.i.d. random variables
X ′

1, . . . , X
′
n ∼ Uniform(0, 1) and letting ŷHi (τ) be the value corresponding to the X ′

i-th percentile
of Beta(αu · yi + αv · (1 − yi), βu(τ) · yi + βv(τ) · (1 − yi)). This construction still maintains
the marginal distributions ŷHi ∼ Beta(αu, βu(τ)) if yi = 1 and ŷHi ∼ Beta(αv, βv(τ)) if yi = 0.
However, under this construction, TPRs(τ0) ≥ · · · ≥ TPRs(τk) and FPRs(τ0) ≥ · · · ≥ FPRs(τk)
also hold.

By the Law of Large Numbers, for any 0 ≤ i ≤ k, TPRs(τi) =
1
nr

∑
yi=1 ŷ

H
i (τi)

a.s.→ αu(τi)
αu(τi)+βu(τi)

=

u(τi). Similarly, FPRs(τi)
a.s.→ αv(τi)

αv(τi)+βv(τi)
= v(τi). Thus, by the Continuous Mapping Theorem:

AUROCs =
1

2

k∑
i=1

(FPRs(τi−1)− FPRs(τi))(TPRs(τi) + TPRs(τi−1))

a.s.→ 1

2

k∑
i=1

(v(τi−1)− v(τi)) · (u(τi) + u(τi−1))

(9)

Thus, AUROC,AUROCs a.s.→ 1
2

∑k
i=1(v(τi−1) − v(τi)) · (u(τi) + u(τi−1)) both converge almost

surely to the same value. Since AUROC is bounded between 0 and 1, by the Bounded Convergence
Theorem, E[AUROC],E[AUROCs] → 1

2

∑k
i=1(v(τi−1)− v(τi)) · (u(τi) + u(τi−1)).

2 Heaviside Function Approximation

2.1 Sigmoid Approximation: Visual Analysis of Trade-offs when Searching for Optimal k

As described in Section 3.1 of the main paper, a tradeoff must be made when choosing an appropriate
value for k in the sigmoid approximation. As k increases, the approximation becomes closer to the
Heaviside step function when τ = 0.5, as shown in Figure 1. However, the range of values with zero
gradient increases, as shown in Figure 2.

It is important to note that for soft-set membership calculation, as k decreases, the number of τ values
over which the approximation diverges from the Heaviside step function at the limit increases. In
other words, as k decreases, the number of τ values increases for which the sigmoid approximation
does not adhere to the following limits:

lim
p→0

H(p, τ) = 0 ∀ τ lim
p→1

H(p, τ) = 1 ∀ τ (10)

Figure 1 illustrates that for k = 50, the approximation does approach the limits in Eq. (10) for all
values of τ . Contrarily, for k=1, the approximation does not approach the limits in Eq. (10) for any
values of τ .

For our experiments, we searched for the best value of k in {1, 10, 20, 50} and found that k = 10 led
to the best performance.

5

2.2 Derivation of the Linear Heaviside Approximation

Our proposed linear Heaviside approximation, Hl, is formulated to ensure adherence to the properties
described in Section 3.1 of the main paper.

We concern ourselves with only the range over [0,1] since we expect the input to represent a probability
in [0,1].

For 0 ≤ p ≤ 1, we start by specifying the endpoints to ensure Eq. (10) above, and we define the
point at p = τ to ensure the property Hl(p = τ, τ) = 0.5:

Hl(p, τ) =


0 if p = 0

1 if p = 1

0.5 if p = τ

(11)

A natural next step would be to solve for a three point linearly interpolated function using the points
defined in Eq. (11). However, we find that in practice this is difficult to optimize, perhaps due to the
fact that the gradient of one segment becomes much greater than the other as τ approaches 0 or 1.
Thus we instead define two more points relative to τ with the introduction of the parameter δ, which

Figure 1: Sigmoid approximation of the Heaviside step function by k and τ . With increased values of
k, the approximation becomes closer to the Heaviside step function. As k decreases, the number τ
values over which the approximation diverges from the Heaviside step function at the limit increases.

Figure 2: Derivative of the sigmoid approximation of the Heaviside step function by k and τ . As k
increases, the range of values with zero gradient increases.

6

makes optimization via backpropagation more stable. We specify these two points to be equal to δ
and 1− δ when the inputs are halfway the distance between τ and the nearest endpoint (0 or 1).

Let τm be the distance between τ and the nearest endpoint of Hl:

τm = min{τ, 1− τ} (12)

Then, we define the two new points at which Hl(p, τ) is defined as:

Hl(p, τ) =

{
δ if p = τ − τm

2

1− δ if p = τ + τm
2

(13)

The parameter δ is chosen such that the function, Hl remains non-decreasing, limiting the range of δ
to [0, 0.5]. Note that, as shown in Figure 3 (left), a choice of δ = 0 would result in gradient equal to
zero between p = 0 and p = τ − τm

2 as well as between p = τ + τm
2 and p = 1. As shown in Figure

3 (middle), a choice of δ = 0.5 would result in a gradient equal to zero between p = τ − τm
2 and

p = τ + τm
2 . We empirically determined that a value in the range of 0.1 ≤ δ ≤ 0.2 works well in

practice. A linear approximation with δ = 0.1 is shown in Figure 3 (right).

Figure 3: Linear Heaviside approximation Hl with δ values of 0 (left), 0.5 (middle), and 0.1 (right).

In total, the following five points for Hl have now been defined as follows:

Hl(p, τ) =



0 if p = 0

δ if p = τ − τm
2

0.5 if p = τ

1− δ if p = τ + τm
2

1 if p = 1

(14)

The property of Hl(p = τ, τ) = 0.5 is now satisfied by our formulation. We can use the points to
solve for three line segments that fully define Hl. We denote the slope and intercept of each segment
from left to right as m1,m2,m3 and b1, b2, b3 respectively. These slopes, from left to right, are:

m1 =
δ

τ − τm
2

m2 =
1− 2δ

τm
m3 =

δ

1− τ − τm
2

We can solve for the first intercept, b1, with p = τ − τm
2 :

δ = m1(τ − τm
2
) + b1

b1 = δ − (
δ

τ − τm
2

)(τ − τm
2
)

b1 = 0

7

We then solve for the second intercept, b2, with p = τ :

0.5 = m2τ + b2
b2 = 0.5−m2τ

Finally, we solve for the third intercept, b3, with p = τ + τm
2 :

1− δ = m3(τ +
τm
2
) + b3

b3 = 1− δ −m3(τ +
τm
2
)

Therefore the linear approximation is:

Hl =


p ·m1 if p < τ − τm

2

p ·m3 + (1− δ −m3(τ + τm
2
)) if p > τ + τm

2

p ·m2 + (0.5−m2τ) otherwise
(15)

3 Computational Efficiency

At training time, an objective function with our proposed method has a runtime linear with regard
to the number of samples. This is a large improvement over the adversarial method of Fathony and
Kolter [2] which has, at best, cubic runtime. In practice however, optimizing for a metric with H
over all samples in each batch could lead to increased run time due to the number of constant-time
operations required to compute the metric. To mitigate this and further minimize run time, we observe
that our proposed H can be replaced with an reasonably-sized O(1) lookup table by truncating p to
several decimal places and precomputing H for values of p and τ over the range [0, 1]. For example,
if an interval between values of τ is set to 0.1 and p is truncated at two decimal places, the lookup
table has only 1,000 elements. Using 8-bit storage, this table consumes 1kB of memory.

4 Experimental Setup

4.1 Datasets

We report results of experiments on four binary classification datasets of tabular data with varying
levels of class imbalance applicable to a wide range of domains (Section 5.1 of the main paper).
We also report results of experiments on two different binary classification datasets created from a
commonly used image dataset (Section 5.2 of the main paper) and results of experiments on graph
data (Section 5.3 of the main paper).

For tabular datasets, features were centered and scaled to unit variance, and the data was split
into separate train (64%), test (20%) and validation (16%) sets. For image datasets, the data was
normalized and split into separate train (67%), test (17%), and validation (17%) sets.

4.1.1 Synthetic Datasets

Two synthetic datasets were generated, named “Synthetic 33%” “Synthetic 5%” with a positive to
negative sample balance of 33% and 4.76%, respectively. Each dataset was formed by creating two
isotropic gaussian blobs and removing a randomly-sampled proportion of the positive data points.

4.1.2 CocktailParty Dataset

The CocktailParty Dataset1 [15] consists of annotations for the locations and orientations of six
people in a physical space. The task is to predict whether or not two individuals are part of the same

1https://tev.fbk.eu/technologies/cocktailparty-dataset-multi-view-dataset-social-behavior-analysis

8

conversational group. We use a total of 22 spatial properties describing the locations and orientations
of the two individuals as well as those of the other four individuals around them. These features
were extracted for every pair of individuals in every frame of the original dataset, resulting in 4800
samples being obtained from 320 frames (320× 15 possible pairings = 4800 data points). The spatial
coordinates of each data point were chosen such that the individuals in the pair lie along the x-axis
with the origin halfway between them. The final dataset has a 30.29% positive class balance.

4.1.3 Adult Data Set

The Adult Data Set2 from the UCI Machine Learning Repository [1] consists of data extracted from
the 1994 Census database with the intended task of predicting whether a person makes more than
$50K per year. This dataset has 14 features of which 1 feature, indicating the number of people
represented by the data point, was removed as it has no bearing on the labeled outcome. This dataset
contains 48842 points of which 11687 are positive resulting in a 23.93% positive class balance.

4.1.4 Mammography Dataset

The binary classification data for microcalcifications in the Mammography dataset [13], available
from OpenML,3 is composed of 6 features, all of which were considered in our experiments. This
dataset has 11183 total samples, 260 of which are positive making it imbalanced. The dataset has
only 2.32% positive-class examples.

4.1.5 Kaggle Credit Card Fraud Detection

The Kaggle Credit Card Fraud Detection dataset [12] consists of transaction data for European card
users over two days in September of 2013. It has data for 284807 total transactions and 492 instances
of fraud. These positive samples, corresponding to cases of fraud, result in a 0.17% positive-sample
balance. The Kaggle dataset has 28 unnamed features as well as two more named features: transaction
time and amount. The time feature was removed to avoid learning correlation between time step and
label. Amount was log-scaled due to the wide range in values resulting in a total of 29 features.

4.1.6 Image Datasets

The CIFAR-10 dataset4 [7] contains sixty thousand images evenly distributed across ten mutually
exclusive classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Each image
is a three-channel color (RGB) image with a size of 32x32 pixels. We created two binary datasets
from CIFAR-10, discussed below.

CIFAR-10-Transportation: CIFAR-10-Transportation was created to achieve 40% class balance.
If the image was labeled as an airplane, automobile, ship, or truck, it was considered to be in the
positive class.

CIFAR-10-Frog: CIFAR-10-Frog was created to achieve 10% class balance. Only images labeled
as a frog were considered the positive class.

4.2 Architecture and Training

Our experiments aim to fairly evaluate our method using different objective functions. Therefore,
the same network architecture and training scheme was used unless otherwise noted. The binary
classifier for tabular data was a feedforward neural network consisting of three fully connected layers
of 32 units, 16 units, and 1 unit. The first two layers were activated via Rectified Linear Unit (ReLU)
[9] and followed by dropout [4]. The final layer was a sigmoid-activated single-unit output. For
image datasets, the Tiny Darknet [11] architecture was used. The ADAM optimizer [6] was used for
training with lr = 0.001 and batch size of 1024 for tabular datasets, and lr = 0.0001 and batch size
of 128 for image datasets. The same batch size and learning rate were used for all methods except [2],
which used hyperparameters (e.g., batch size of 20) suggested by the first author through personal
communication. Early stopping was used to terminate training after the validation loss stopped

2https://archive.ics.uci.edu/ml/machine-learning-databases/adult/
3https://www.openml.org/d/310
4https://www.cs.toronto.edu/ kriz/cifar.html

9

decreasing over a sliding window of 100 epochs. Each model optimized via a specific loss was
trained using PyTorch. We provide open source implementations of our proposed approach. Training
systems used either an NVIDIA Titan X or RTX 2080ti GPU with an Intel i7 3.7GHz processor and
32GB of RAM, with the exception of the adversarial approach to optimize F1-Score [2], which had
to be run on a CPU due to the author’s provided implementation.

4.3 Hyperparameters

Our method introduces two new hyperparameters: τ , and k or δ. We empirically determined values of
τ = 0.5, k = 10 for Hs, and δ = 0.1 for Hl, which were used for all experiments. Given the results
of these experiments on a wide range of problems, we believe these values work well in practice and,
therefore, do not require extra effort for tuning them.

The incorporation of an approximation for the Heaviside step function introduces the k or δ parameter,
depending on which approximation is chosen. For the sigmoid approximation, as k decreases,
the derivative of Hs becomes smoother, facilitating gradient descent. However, in the limit, the
approximation may no longer approach H as discussed previously in Section 2.1 of the Supplementary
Material. Similar to the parameter k in the sigmoid approximation, we define a slope parameter, δ, for
our proposed Hl. A larger δ provides a smoother derivative but further deviation from H . However,
unlike Hs, Hl always approaches H in the limit. Therefore, the particular choice of δ is less crucial
within a reasonable range. We empirically determined that 0.1 ≤ δ ≤ 0.2 works well in practice.

In order to determine an appropriate batch size, we trained and evaluated models on Accuracy and
F1-Score using our method over 10 trials. Both the sigmoid and the piecewise linear Heaviside
approximations were used. We considered batch sizes in {128, 1024, 2048, 4096} and results are
shown in Table 2. Training batch size had a minimal effect on final classifier performance in
our experiments and the impact of the choice of approximation varied with class imbalance. The
performance of Hl and Hs were similar for the more balanced dataset (Synthetic 33%). However,
in the case of imbalanced data (Synthetic 5%), the performance of the Hl was greater than of Hs

when optimizing F1 over the soft-set confusion matrix and evaluating with the F1-Score metric. For
optimizing Accuracy with our approach, performance evaluated on F1-Score was zero, due to the
network’s incentive to maximize Accuracy by predicting only dominant-class samples [3]. We believe
that the advantage of the Hl in some cases is due to its adherence to the key properties mentioned in
Section 3.1 of the main paper. For the experiments on tabular data, we chose a batch size of 1024.

5 Experiments on Tabular Data with Sigmoid Heaviside Approximation

Section 5.1 of the main paper presented results with our method by approximating the Heaviside
approximation with our proposed linearly interpolated function. Table 1 present results using the
sigmoid approximation.

6 Additional Results

6.1 Batch Size

Table 2 provides the results of our experiments exploring the effect of batch size on the performance
of our method, using both approximations, compared to the BCE baseline. This experiment informed
our choice of the batch size hyperparameter as described in Section 4.3 of the Supplementary
Material. Apart from zero F1-Score for optimizing Accuracy with soft sets on the Synthetic 5%
dataset, the results are similar within each metric regardless of dataset, batch size, and Heaviside
approximation. Performance on the Synthetic 5% dataset, optimizing F l

1 with soft sets for all batch
sizes is comparable, but better than F s

1 .

6.2 Balancing between Precision and Recall

Experimental results for balancing between precision and recall as described in Section 5.4 of the
main paper are reported in Table 3 for the remaining three tabular datasets. These supplementary
results are similar to those presented in the main paper.

10

Table 1: Losses (rows): F1, Accuracy, and AUROC via the proposed method (*) using the sigmoid
approximation; F1-Score† via adversarial approach [2] and AUROC‡ via WMW statistic [14].

CocktailParty (µ± σ) Adult (µ± σ)

Loss F1-Score Accuracy AUROC F1-Score Accuracy AUROC

(1) F1* 0.73± 0.02 0.84± 0.01 0.81± 0.01 0.61± 0.04 0.74± 0.07 0.77± 0.03
(2) F1† 0.30± 0.06 0.76± 0.01 0.60± 0.02 0.16± 0.02 0.78± 0.00 0.55± 0.01
(3) Accuracy* 0.71± 0.02 0.85± 0.01 0.78± 0.01 0.36± 0.03 0.81± 0.00 0.61± 0.01
(4) AUROC* 0.55± 0.02 0.48± 0.01 0.60± 0.00 0.46± 0.01 0.42± 0.00 0.59± 0.01
(5) AUROC‡ 0.01± 0.03 0.70± 0.03 0.50± 0.00 0.00± 0.00 0.76± 0.00 0.50± 0.00
(6) BCE 0.70± 0.02 0.85± 0.01 0.78± 0.01 0.26± 0.06 0.80± 0.01 0.58± 0.02

Mammography (µ± σ) Kaggle (µ± σ)

Loss F1-Score Accuracy AUROC F1-Score Accuracy AUROC

(1) F1* 0.50± 0.29 0.89± 0.16 0.75± 0.14 0.81± 0.02 1.00± 0.00 0.89± 0.02
(2) F1† 0.46± 0.08 0.98± 0.00 0.66± 0.04 0.76± 0.06 1.00± 0.00 0.83± 0.04
(3) Accuracy* 0.00± 0.00 0.98± 0.00 0.50± 0.00 0.72± 0.25 1.00± 0.00 0.84± 0.12
(4) AUROC* 0.22± 0.01 0.34± 0.00 0.63± 0.01 0.25± 0.01 0.33± 0.00 0.64± 0.00
(5) AUROC‡ 0.00± 0.01 0.88± 0.12 0.50± 0.00 0.00± 0.00 0.93± 0.15 0.50± 0.00
(6) BCE 0.56± 0.11 0.99± 0.00 0.71± 0.06 0.50± 0.33 1.00± 0.00 0.73± 0.16

7 Additional Comparisons with Other Methods of Binary Classification

7.1 Other Baselines

We compare our method with other baselines on the tabular datasets, shown in Table 4. Included in
these supplementary results are neural network classifiers trained on Dice [8], and SVMperf [5] to
which [10] compares. SVMperf is trained on Errorrate loss (E), F1 loss (F1), and AUROC loss (ROC).
Our method outperforms the Dice loss in all cases. Our method is comparable or better than SVMperf.

7.2 Weighted Loss Results

A common method of dealing with sample imbalance is weighting. In this section, we show that our
method can also be used with weighting. During training, weighted the loss by the amount of class
imbalance in each dataset and compared our method with binary cross entropy. More specifically, we
computed sample weights W for each dataset between negative (n) and positive (p) samples where
positive samples always correspond to the minority class:

Wn =
1

|n|
|n|+ |p|

2.0
Wp =

1

|p|
|n|+ |p|

2.0

The weights calculated for our datasets are shown in Table 5.

Table 6 shows losses (rows): F1 and Accuracy (Acc) trained with the linear (l) and sigmoid (s)
approximations compared with the traditional binary cross-entropy. Compared to Table 1 in the main
paper, in Table 6 the F1 loss (line 1) decreased in performance and Accuracy loss (line 2) increased
in performance. In all cases, our method without weighting performs similarly or better than the BCE
baseline with weighting.

Another method of dealing with class imbalance is oversampling. Oversampling is when samples are
repeatedly sampled from the minority class until class balance is reached. We applied oversampling
to the training split of each dataset. Using this technique we achieved a positive versus negative
sample split in each dataset nearer 50/50, detailed in Table 7.

The performance of our method versus the BCE baseline, both with oversampling, is shown in Table 8.
In general our method performs better without oversampling. The BCE baseline shows improvement
in some cases compared to BCE with weighting. In all cases, our method without oversampling
performs similarly or better than the BCE baseline with oversampling.

11

Table 2: Accuracy and F1 loss (rows) via the proposed method (*) with the sigmoid (s) and linear (l)
approximations by batch sizes {128, 1024, 2048, 4096}. The Synthetic 5% dataset F1-Score is zero
when trained with Accuracy over soft sets loss. Other results are similar within each metric. See text
for details.

Synthetic 5% Dataset

Accuracy (µ± σ)

Loss B = 128 1024 2048 4096

(1) F l
1* 0.95± 0.00 0.95± 0.01 0.95± 0.01 0.95± 0.01

(2) F s
1 * 0.84± 0.16 0.78± 0.18 0.77± 0.18 0.74± 0.17

(3) Accuracyl* 0.95± 0.00 0.95± 0.01 0.95± 0.01 0.95± 0.01
(4) Accuracys* 0.95± 0.01 0.95± 0.00 0.95± 0.01 0.96± 0.01
(5) BCE 0.96± 0.01 0.95± 0.01 0.95± 0.01 0.95± 0.00

F1-Score (µ± σ)

Loss B = 128 1024 2048 4096

(1) F l
1* 0.52± 0.04 0.50± 0.06 0.52± 0.05 0.48± 0.04

(2) F s
1 * 0.32± 0.18 0.27± 0.22 0.24± 0.20 0.21± 0.17

(3) Accuracyl* 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
(4) Accuracys* 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
(5) BCE 0.22± 0.10 0.21± 0.11 0.12± 0.08 0.09± 0.06

Synthetic 33% Dataset

Accuracy (µ± σ)

Loss B = 128 1024 2048 4096

(1) F l
1* 0.84± 0.01 0.84± 0.01 0.84± 0.00 0.85± 0.01

(2) F s
1 * 0.84± 0.01 0.83± 0.01 0.83± 0.02 0.83± 0.01

(3) Accuracyl* 0.85± 0.01 0.85± 0.01 0.86± 0.01 0.85± 0.01
(4) Accuracys* 0.85± 0.00 0.85± 0.01 0.85± 0.01 0.85± 0.01
(5) BCE 0.84± 0.01 0.85± 0.01 0.84± 0.01 0.85± 0.01

F1-Score (µ± σ)

Loss B = 128 1024 2048 4096

(1) F l
1* 0.77± 0.01 0.78± 0.01 0.78± 0.01 0.78± 0.01

(2) F s
1 * 0.77± 0.01 0.76± 0.01 0.77± 0.02 0.77± 0.01

(3) Accuracyl* 0.77± 0.01 0.77± 0.01 0.78± 0.01 0.78± 0.01
(4) Accuracys* 0.77± 0.01 0.77± 0.01 0.77± 0.01 0.77± 0.01
(5) BCE 0.74± 0.01 0.74± 0.02 0.74± 0.01 0.74± 0.02

7.3 Image Data

We also compared the performance of our proposed method to neural network classifiers trained with
Dice as the loss function [8]. Results from Dice (logit only) and Dices (sigmoid output) are in Table
9. Our method greatly outperformed Dice and DICEs, likely due to the fact that Dice is designed for
image segmentation, rather than binary classification.

12

Table 3: Optimizing Fβ-Scores (β = {1, 2, 3}) via our method to balance between precision and
recall while maximizing F1-Score.

Adult (µ± σ)

Loss F1-Score F2-Score F3-Score Precision Recall

(1) F1* 0.64± 0.01 0.72± 0.03 0.75± 0.05 0.54± 0.04 0.78± 0.07
(2) F2* 0.43± 0.02 0.65± 0.02 0.79± 0.01 0.27± 0.02 1.00± 0.00
(3) F3* 0.39± 0.01 0.61± 0.01 0.76± 0.01 0.24± 0.01 1.00± 0.00

Kaggle (µ± σ)

Loss F1-Score F2-Score F3-Score Precision Recall

(1) F1* 0.82± 0.04 0.80± 0.04 0.80± 0.04 0.84± 0.04 0.79± 0.04
(2) F2* 0.81± 0.02 0.80± 0.03 0.80± 0.03 0.83± 0.02 0.79± 0.03
(3) F3* 0.82± 0.03 0.81± 0.04 0.81± 0.04 0.82± 0.04 0.81± 0.04

CocktailParty (µ± σ)

Loss F1-Score F2-Score F3-Score Precision Recall

(1) F1* 0.74± 0.01 0.75± 0.02 0.75± 0.02 0.73± 0.03 0.75± 0.02
(2) F2* 0.68± 0.02 0.80± 0.01 0.85± 0.01 0.54± 0.03 0.91± 0.01
(3) F3* 0.60± 0.02 0.77± 0.01 0.85± 0.01 0.43± 0.02 0.95± 0.02

Table 4: Other baselines on tabular data. See text for details.

CocktailParty (µ± σ) Adult (µ± σ)

Loss Accuracy F1-Score AUROC Accuracy F1-Score AUROC

(1) Dice 0.68± 0.04 0.49± 0.02 0.56± 0.02 0.50± 0.15 0.40± 0.02 0.55± 0.02

(2) SVMperf
E 0.82 0.66 0.75 0.81 0.60 0.75

(3) SVMperf
F1 0.78 0.69 0.78 0.51 0.48 0.66

(4) SVMperf
ROC 0.76 0.67 0.77 0.32 0.41 0.56

Mammography (µ± σ) Kaggle (µ± σ)

Loss Accuracy F1-Score AUROC Accuracy F1-Score AUROC

(1) Dice 0.85± 0.17 0.19± 0.09 0.65± 0.06 0.67± 0.15 0.10± 0.06 0.76± 0.06

(2) SVMperf
E 0.98 0.51 0.68 1.00 0.80 0.89

(3) SVMperf
F1 0.98 0.59 0.82 1.00 0.80 0.90

(4) SVMperf
ROC 0.61 0.11 0.77 0.67 0.01 0.83

Table 5: Dataset sample weights. See text for details.
Dataset Negative Positive

CocktailParty 0.72 1.65
Adult 0.66 2.07

Mammography 0.51 21.55
Kaggle 0.50 290.25

13

Table 6: Weighted loss results. See text for details.
CocktailParty (µ± σ) Adult (µ± σ)

Loss F1-Score Accuracy F1-Score Accuracy

(1) F l
1 0.72± 0.01 0.80± 0.01 0.45± 0.03 0.41± 0.06

(2) F s
1 0.71± 0.03 0.77± 0.06 0.42± 0.02 0.36± 0.05

(3) Accuracyl 0.75± 0.02 0.83± 0.01 0.57± 0.04 0.66± 0.06
(4) Accuracys 0.72± 0.02 0.82± 0.02 0.54± 0.03 0.61± 0.06
(5) BCE 0.75± 0.02 0.85± 0.01 0.56± 0.05 0.80± 0.02

Mammography (µ± σ) Kaggle (µ± σ)

Loss F1-Score Accuracy F1-Score Accuracy

(1) F l
1 0.31± 0.04 0.90± 0.01 0.13± 0.02 0.98± 0.01

(2) F s
1 0.28± 0.05 0.88± 0.04 0.41± 0.17 0.99± 0.01

(3) Accuracyl 0.34± 0.04 0.92± 0.01 0.42± 0.08 1.00± 0.00
(4) Accuracys 0.35± 0.04 0.92± 0.01 0.38± 0.11 0.99± 0.00
(5) BCE 0.43± 0.06 0.95± 0.01 0.21± 0.05 0.99± 0.00

Table 7: Data balancing via Oversampling. See text for details.
Entire Dataset Oversampled Train Split

Dataset Total Positive Total Positive

CocktailParty 4800 1454 30.29% 4284 2142 50%
Adult 48842 11687 23.93% 39564 19782 50%

Mammography 11183 260 2.32% 13970 6985 50%
Kaggle 284807 492 0.17% 363894 181947 50%

Table 8: Oversampling Results. See text for details.
CocktailParty (µ± σ) Adult (µ± σ)

Loss F1-Score Accuracy F1-Score Accuracy

(1) F l
1 0.72± 0.02 0.80± 0.01 0.45± 0.02 0.42± 0.05

(2) F s
1 0.71± 0.02 0.79± 0.01 0.43± 0.02 0.39± 0.04

(3) Accuracyl 0.74± 0.02 0.83± 0.02 0.55± 0.06 0.62± 0.10
(4) Accuracys 0.73± 0.03 0.82± 0.02 0.53± 0.04 0.59± 0.07
(5) BCE 0.75± 0.02 0.85± 0.01 0.59± 0.03 0.81± 0.02

Mammography (µ± σ) Kaggle (µ± σ)

Loss F1-Score Accuracy F1-Score Accuracy

(1) F l
1 0.38± 0.07 0.93± 0.02 0.73± 0.06 1.00± 0.00

(2) F s
1 0.06± 0.03 0.48± 0.04 0.69± 0.07 1.00± 0.00

(3) Accuracyl 0.49± 0.07 0.96± 0.01 0.75± 0.04 1.00± 0.00
(4) Accuracys 0.49± 0.06 0.96± 0.01 0.74± 0.04 1.00± 0.00
(5) BCE 0.53± 0.04 0.97± 0.00 0.57± 0.06 1.00± 0.00

Table 9: Losses (rows): DICE and DICEs optimize the DICE coefficient. DICE is logit-only, and
DICEs uses a sigmoid output layer.

CIFAR-10-Transportation Results (µ± σ)

Loss Accuracy F1-Score

(6) DICE 0.521± 0.02 0.625± 0.01
(7) DICEs 0.546± 0.04 0.638± 0.02

CIFAR-10-Frog Results (µ± σ)

Loss Accuracy F1-Score

(6) DICE 0.230± 0.02 0.205± 0.00
(7) DICEs 0.277± 0.04 0.216± 0.01

14

References
[1] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[2] Rizal Fathony and Zico Kolter. Ap-perf: Incorporating generic performance metrics in differen-
tiable learning. In AISTATS, pages 4130–4140, 2020.

[3] Haibo He and Edwardo A Garcia. Learning from imbalanced data. TKDE, 21(9):1263–1284,
2009.

[4] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhut-
dinov. Improving neural networks by preventing co-adaptation of feature detectors. CoRR,
2012.

[5] Thorsten Joachims. Training linear svms in linear time. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 217–226,
2006.

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, ICLR, 2015.

[7] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[8] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural
networks for volumetric medical image segmentation. In 2016 fourth international conference
on 3D vision (3DV), 2016.

[9] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In ICML, pages 807–814, 2010.

[10] Harikrishna Narasimhan, Rohit Vaish, and Shivani Agarwal. On the statistical consistency of
plug-in classifiers for non-decomposable performance measures. In NeurIPS, pages 1493–1501,
2014.

[11] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. CoRR, abs/1804.02767,
2018.

[12] Machine Learning Group UBL. Credit card fraud detection. https://www.kaggle.com/
mlg-ulb/creditcardfraud. Accessed: 2022.

[13] Kevin S Woods, Jeffrey L Solka, Carey E Priebe, Chris C Doss, Kevin W Bowyer, and
Laurence P Clarke. Comparative evaluation of pattern recognition techniques for detection of
microcalcifications. In Biomedical Image Processing and Biomedical Visualization, 1993.

[14] Lian Yan, Robert H Dodier, Michael Mozer, and Richard H Wolniewicz. Optimizing classifier
performance via an approximation to the wilcoxon-mann-whitney statistic. In ICML, 2003.

[15] Gloria Zen, Bruno Lepri, Elisa Ricci, and Oswald Lanz. Space speaks: towards socially and
personality aware visual surveillance. In Proceedings of the 1st ACM international workshop
on Multimodal pervasive video analysis, pages 37–42, 2010.

15

https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud

	Theoretical Grounding
	Lipschitz Continuity of Metrics Based on Soft-Set Confusion Matrix Values
	Approximation of Confusion-Matrix Based Metrics with Soft Sets
	Continuous Generalization and Accuracy
	AUROC

	Heaviside Function Approximation
	Sigmoid Approximation: Visual Analysis of Trade-offs when Searching for Optimal k
	Derivation of the Linear Heaviside Approximation

	Computational Efficiency
	Experimental Setup
	Datasets
	Synthetic Datasets
	CocktailParty Dataset
	Adult Data Set
	Mammography Dataset
	Kaggle Credit Card Fraud Detection
	Image Datasets

	Architecture and Training
	Hyperparameters

	Experiments on Tabular Data with Sigmoid Heaviside Approximation
	Additional Results
	Batch Size
	Balancing between Precision and Recall

	Additional Comparisons with Other Methods of Binary Classification
	Other Baselines
	Weighted Loss Results
	Image Data

